A central limit theorem for the Euler characteristic of a Gaussian excursion set
نویسندگان
چکیده
منابع مشابه
Almost Sure Central Limit Theorem for a Nonstationary Gaussian Sequence
Let {Xn; n ≥ 1} be a standardized non-stationary Gaussian sequence, and let denote Sn ∑n k 1 Xk , σn √ Var Sn . Under some additional condition, let the constants {uni; 1 ≤ i ≤ n, n ≥ 1} satisfy ∑n i 1 1−Φ uni → τ as n → ∞ for some τ ≥ 0 and min1≤i≤n uni ≥ c logn , for some c > 0, then, we have limn→∞ 1/ logn ∑n k 1 1/k I{∩i 1 Xi ≤ uki , Sk/σk ≤ x} e−τΦ x almost surely for any x ∈ R, where I A ...
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملA Functional Central Limit Theorem for The
In this paper, we present a functional fluid limit theorem and a functional central limit theorem for a queue with an infinity of servers M/GI/∞. The system is represented by a point-measure valued process keeping track of the remaining processing times of the customers in service. The convergence in law of a sequence of such processes after rescaling is proved by compactness-uniqueness methods...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
A Martingale Central Limit Theorem
We present a proof of a martingale central limit theorem (Theorem 2) due to McLeish (1974). Then, an application to Markov chains is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 2016
ISSN: 0091-1798
DOI: 10.1214/15-aop1062